Name:

Due Wednesday, February 26, 2025.

Write your homework neatly, in pencil, on blank white $8\frac{1}{2} \times 11$ printer paper. Always write the problem, or at least enough of it so that your work is readable. If the problem involves a function, write the function. If the problem involves an equation, write the equation. Use words, and when appropriate, write in sentences.

Definition 1. Define the *natural logarithm* to be the function

$$\log: (0, \infty) \to \mathbb{R}$$
 given by $\log(x) = \int_{1}^{x} \frac{1}{t} dt$.

By the Fundamental Theorem of Calculus (FTC) and the Mean Value Theorem (MVT Corollary 2), we have

$$\frac{d}{dx}\log(x) = \frac{1}{x}$$
 and $\int \frac{1}{x} dx = \log(x) + C$.

Engineers write ln(x) = log(x).

Problem 1 (Thomas §7.2 # 13). Find $\frac{dy}{dx}$ where

$$y = \ln x^3$$
.

Problem 2 (Thomas §7.2 # 21). Find $\frac{dy}{dx}$ where

$$y = \frac{\ln x}{1 + \ln x}.$$

Problem 3 (Thomas $\S7.2 \# 45$). Compute

$$\int_2^4 \frac{dx}{x(\ln x)^2}.$$

Problem 4 (Thomas §3.5 # 35). Find $\frac{dr}{d\theta}$ where

$$r = \sin(\theta^2)\cos(2\theta)$$
.

Problem 5 (Thomas §3.6 # 25). Find $\frac{dy}{dx}$ where

$$y^2 = \frac{x-1}{x+1}.$$

Problem 6 (Thomas $\S5.5 \# 35$). Compute

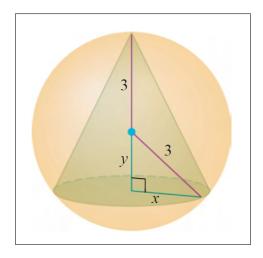
$$\int \frac{\sin(2t+1)}{\cos^2(2t+1)} \, dt.$$

Problem 7 (Thomas §3.5 # 60). Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1.

x	f(x)	g(x)	f'(x)	g'(x)
0	1	1	5	1/3
1	3	-4	-1/3	-8/3

Find the derivatives with respect to x of the following combinations at the given value of x.

- (a) 5f(x) g(x), x = 1
- **(b)** $f(x)g^3(x), x = 0$
- (c) $\frac{f(x)}{g(x)+1}$, x=1
- (d) f(g(x)), x = 0
- (e) g(f(x)), x = 0
- (f) $(x^{11} + f(x))^{-2}$, x = 1
- (g) f(x+g(x)), x=0


Problem 8. Let

$$f(x) = 6x^3 - 11x^2 - 24x + 9.$$

Note that f(3) = 0. Find all zeros of f.

Problem 9. Consider the family of functions $f(x) = x^4 - ax^2$. Show that f has a local maximum if and only if f has 3 distinct zeros.

Problem 10 (Thomas Problem $\S4.5 \# 12$). Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.

